

Enhanced Underwriting thanks to Artificial Intelligence

Documentation Roland Berger

Zurich, January 2017

Artificial intelligence leads to fast, accurate and unbiased results in decision making processes

Comparison human vs. artificially intelligent decision making

1) AI = Artificial intelligence 2) Hidden Layers: Identification of relationships between input data; different weighing of each input leading to complex operations Source: Roland Berger 170123.AI

Various functionalities of Artificial intelligence allow application formats that impact the insurance value chain

Components and functionality of AI in insurance

Components

Algorithms

Set of rules allowing predictions from large amounts of unstructured data; enable handling of complex predictions with little adaption

2

Computing power

Underlying technology allowing the processing of data; relates to the number of transistors

Data

Large data sets required for training the AI algorithms

Functionality (exemplary)

Natural Language Processing

- Includes text mining, voice recognition, and semantic analysis of the identified text/spoken language passages
- > Application example: Virtual assistant, chatbots for customer management

Pattern recognition

- > Efficient discovery of previously unknown patterns in large datasets
- > Application example: Fraud detection, estimation of outstanding claims provision

Visual recognition

- > Algorithms analyze images for scenes, objects, faces, and other content, and return keywords that provide information about the content
- > Application example: Claims management

Different possible application formats exist along the insurance value chain – Underwriting with very high potential

Overview of AI influence on insurance value chain (not exhaustive)

Artificial Intelligence allows integrating an overall customer profitability into underwriting, the traditional core competence of insurers

Overview of different views in underwriting

ustomer	Products for underwriting			ing		
					Step 3	Focus on each customer individually
	Step 2			St	tep 1	
Ň						² Focus on each product per customer group individually
					;	³ Focus on whole customer group holistically
•						Comments
						From step 1 to step 3, underwriting gets increasingly more complex due to its need for large data sets
						 Artificial intelligence per default operates with large amounts of (big) data sets
Å	R	R				> Such large data sets are crucial for being able to generate an overall customer relationship
U	۹	٩	٩	ч		> Thus, AI algorithms finally allow generating an overall customer relationship instead of single tariffs

The insurance ecosystem is increasingly populated by nontraditional players – conventional companies need to act

Insurance innovation ecosystem

Innovation players with exemplary company overview

Start ups

Disruptive insurers (e.g. ZestFinance) use AI to tailor their support and create superior solutions to win, engage, and keep customers

e-commerce websites

Insurance is becoming a marketing API²⁾ item for e-commerce websites by leveraging e.g. big-data, cloud computing and partner API

IT giants

Google¹⁾, IBM, Baidu etc. are active too in IT-based solution for insurances

1) By now, Google has intermediary stopped its advances in online insurance due to missing success 2) API = Application interface, set of clearly defined methods of communication between various software components Source: Roland Berger 170123.Al Underwriting_final_EN.pptx | 6

Use case

ZestFinance focuses on big data analytics with the help of AI for creating a transparent underwriting and credit system

Portrait ZestFinance

Technology

- > Founded in 2009
- > Headquartered in Los Angeles
- > Develops big data underwriting technologies
- > Aims at giving lenders a better understanding of risk
- > Aims at using machine learning algorithms to revolutionize how credit decisions are made
- > Wants to provide fair and transparent credits

- Combination of machine learning techniques and data analysis with traditional credit scoring
- > Technology allows to process many requests on parallel

Goal

- > Helping financial service providers to better understand credit risk in their own businesses
- > Helping financial service providers to better understand the creditworthiness of their borrowers

Methods/Results

- ~ 1/4 of data running through underwriting models is based on new variables constructed by human predictive modelers
- 2 Humans analyze thousands of variables created by machine learning algorithms, modify them based on patterns, trends, and unique insights
- 3 Variables are fed into multiple big data models enhanced with AI algorithms
- 4 New underwriting model offers a 54 % lower default rate compared to the bestin-class industry score

Use case

Baidu employs its expertise in deep learning and big data analytics for reducing insurance risks by applying Artificial intelligence

Portrait Baidu

Company profile Bai 创 百度

> Search engine company

- > Multiple offerings across search, social and knowledge products
- > Increasingly expanding into other industries
- > E.g. joint venture with China Pacific Property Insurance, online insurance joint venture with Allianz, online banking joint venture with Citi group

- > Announced to shift its core business from a search-oriented model to one based on AI in 2016
- > Aims at developing voice search, automatic translation and driverless vehicles
- Application of AI already planned in insurance, loan writing, and image recognition

Goal

Technology

- Participating in the growing market of online insurance by deploying its vast amounts of data
- > Putting the needs of individuals and companies in the center by offering affordable protection

Methods/Results

- Focus on combining loan underwriting and artificial intelligence within its (online) insurance business
- 2 Application of artificial intelligence and machine learning for identifying patterns for risk assessment and risk reduction
- 3 Al algorithms are mainly used for pattern identification

4 Usage of artificially intelligent search algorithms result in improved risk assessment

A multi-step development process ensures a successful integration of Artificial intelligence into the underwriting process

Process development of AI in underwriting in two steps

Source: Roland Berger

We have experience with applying AI in the financial sector, e.g. when assessing the quantitative & qualitative impact of IBM Watson

Project overview – Saving potential on customer advisors with IBM Watson

Background/objective

> Quantitative and gualitative assessment of the impact of the implementation of IBM Watson for the customer advisors of a French retail bank

Approach

- > Bottom-up assessments to analyze the quantitative potential on customer advisors :
 - Time spent per task for each type of customer advisors
 - Assessment of Watson's potential to automate/speed up the tasks (assessment realized also through external benchmarks)
- > Qualitative assessment of the impact of Watson's deployment through customer advisors interviews

Results

- > Quantitative model built
- > Assessments have presented to the Executive Committee and to the Employee Representatives

Chart 1: Background

Chart 2: Objective

Chart 3: Approach

es objectifs s'ins

Chart 4: Results

Your key contacts for artificial intelligence in underwriting

Philipp Angehrn Managing Partner

- > 17 years of consulting experience and 6 years in industry
- Industrial expertise in financial services, engineered products, and high tech
- Competence in corporate finance, strategy, and new business models

Mobile: +41 79 333 44 20 E-Mail: philipp.angehrn@rolandberger.com

Urs Arbter Partner

- > More than 17 years of experience in insurances incl. several leading positions
- Industrial expertise in insurance, banking, and health
- > Competence in Strategy, digitization in sales, product management, customer service / migrations

Mobile: +41 79 777 97 35 E-Mail: urs.arbter@rolandberger.com

Theresa Schachner Consultant

- > More than 3 years of experience in consulting and industry
- Industrial expertise in banking, insurances, and pharmaceuticals
- Competence in artificial intelligence, digitalization, business development

Mobile: +41 79 808 86 29 E-Mail: theresa.schachner@rolandberger.com

Roland Berger

Watson provides 3 technologies relevant for AI applications: natural language processing, machine learning, and hypothesis generation

Overview over cognitive abilities of IBM Watson

