Automated Trucks

The next big disruptor in the automotive industry?

Roland Berger study

Short version – To receive the complete study please contact our US marketing department at linda.saliba@rolandberger.com
Disruption potential
Automated trucks address several challenges that the trucking industry is facing simultaneously: hours-of-service, safety, driver shortage and fuel costs

TCO benefit
In early stages, fast payback of technology investment can only be reached in few applications with high share of truck platooning – significant cost savings expected only long term with driverless trucks

Safety as true driver
As pull from fleet operators will be limited given the slow payback, safety regulation will become a major driver in the adoption of automated trucks

Source: Roland Berger
Hours-of-service, safety, driver shortage and fuel costs are top issues of the trucking industry

Top issues of the trucking industry

Source: ATRI; Roland Berger
Most of the top trucking industry issues can be addressed by automated trucks – Benefits expected also for wider society

Top industry issues addressed by automated trucks

<table>
<thead>
<tr>
<th>Fleet owner impact</th>
<th>Society impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autonomous technology compensates for driver’s lack of attention</td>
<td>Emission reduction</td>
</tr>
<tr>
<td>Mileage improvements through better aerodynamics</td>
<td>Accident mitigation</td>
</tr>
<tr>
<td>Driver distraction</td>
<td>Safer roads</td>
</tr>
<tr>
<td>Optimized resting times for driver of trailing vehicle</td>
<td>Congestion reduction</td>
</tr>
<tr>
<td>90% of truck accidents caused by human error</td>
<td>Driver wellness</td>
</tr>
<tr>
<td>Driver retention</td>
<td>More rested drivers and reduced sleepiness</td>
</tr>
<tr>
<td>Driver shortage</td>
<td>Changed driver role might attract younger drivers</td>
</tr>
<tr>
<td>Driver shortage</td>
<td>Reduced driving stress and fewer monotonous time periods</td>
</tr>
<tr>
<td>Congestion</td>
<td>Driver wellness</td>
</tr>
<tr>
<td>Smaller distance between trucks reduces road area used</td>
<td>More rested drivers and reduced sleepiness</td>
</tr>
</tbody>
</table>

Source: ATRI, Roland Berger
Automated trucks have the potential to bring a disruptive change to the trucking industry

Automated trucks – Disruption potential

<table>
<thead>
<tr>
<th>Fuel consumption</th>
<th>Safety</th>
<th>Driver demand</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy consumption heavy duty trucks [tn Btu]</td>
<td>Trucks involved in crashes [per 100 m vehicle-miles]</td>
<td>Number of heavy duty truck drivers [m]</td>
<td></td>
</tr>
<tr>
<td>Base year 2000</td>
<td>Projected development w/o automated trucks</td>
<td>Potential development with automated trucks</td>
<td></td>
</tr>
</tbody>
</table>

- **Fuel consumption**
 - 2000: 3,700, 95% reduction
 - 2020: 5,200, 90% reduction
 - 2040: 7,200, 90% reduction

- **Safety**
 - 2000: 222
 - 2020: 42
 - 2040: 8

- **Driver demand**
 - 2000: 1.6
 - 2020: 1.9
 - 2040: 2.1

- **Others**
 - Reduction of traffic jams
 - Higher driver retention
 - Improved truck utilization
 - Lower transport cost
 - Emergence of new business models

Source: EIA; NHTSA; BLS; Roland Berger
Benefits of automated trucks are twofold: safer and more comfortable vehicle operation and fuel savings from platooning

Benefits from automated trucks

Automated driving

- Increased driver comfort and safety through fully automated vehicle operation

Benefits
- Optimized driver rest periods
- Fuel efficiency gains from predictive driving
- Eliminating human error
- Better vehicle utilization
- Eventually driverless vehicle

Cooperative automated driving

- Improved aerodynamics and fuel consumption through reduced inter-vehicle spacing

Benefits
- Additional fuel efficiency gains

Self-driving trucks

Source: Roland Berger
The technological development towards fully automated trucks takes place in stages – Driver engagement changes with stages

Technological roadmap (SAE stage definition)

<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 0</td>
<td>No Automation</td>
</tr>
<tr>
<td>Stage 1</td>
<td>Driver Assistance – Automation of individual function, driver fully engaged</td>
</tr>
<tr>
<td>Stage 2</td>
<td>Partial Automation – Automation of multiple functions, driver fully engaged</td>
</tr>
<tr>
<td>Stage 3</td>
<td>Conditional Automation – Automation of multiple functions, driver responds to a request to intervene</td>
</tr>
<tr>
<td>Stage 4</td>
<td>High Automation – Automated in certain conditions, driver not expected to monitor road – Driver has no responsibility during automated mode</td>
</tr>
<tr>
<td>Stage 5</td>
<td>Full Automation – Situation independent automated driving – Driver has no responsibility during driving</td>
</tr>
</tbody>
</table>

Source: SAE; Roland Berger
Each stage of automated trucks requires increasingly complex features that transfer more control from the driver to the truck

Required features by stage of automation

<table>
<thead>
<tr>
<th>Stage 0</th>
<th>No Automation</th>
</tr>
</thead>
<tbody>
<tr>
<td>> Blind spot detection/ right turn assistant</td>
<td></td>
</tr>
<tr>
<td>> Collision warn system</td>
<td></td>
</tr>
<tr>
<td>> Lane departure warning system</td>
<td></td>
</tr>
<tr>
<td>> Driver monitoring system</td>
<td></td>
</tr>
<tr>
<td>> Traffic sign recognition</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Driver Assistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>> Emergency braking system</td>
<td></td>
</tr>
<tr>
<td>> Adaptive cruise control or</td>
<td></td>
</tr>
<tr>
<td>> Lane keep assist</td>
<td></td>
</tr>
<tr>
<td>> Driver-assisted truck platoon (DATP)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 2</th>
<th>Partial Automation</th>
</tr>
</thead>
<tbody>
<tr>
<td>> Traffic jam/ construction site assistant</td>
<td></td>
</tr>
<tr>
<td>> Highway assist</td>
<td></td>
</tr>
<tr>
<td>> Predictive powertrain control</td>
<td></td>
</tr>
<tr>
<td>> Lane change assist incl. right-turning</td>
<td></td>
</tr>
<tr>
<td>> Intelligent parking assist system</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 3</th>
<th>Conditional Automation</th>
</tr>
</thead>
<tbody>
<tr>
<td>> Platooning</td>
<td></td>
</tr>
<tr>
<td>> Real time communication between trucks via V2V/DSRC</td>
<td></td>
</tr>
<tr>
<td>> Highway pilot – driver "alert"</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 4</th>
<th>High Automation</th>
</tr>
</thead>
<tbody>
<tr>
<td>> Highway pilot – no driver responsibility</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stage 5</th>
<th>Full Automation</th>
</tr>
</thead>
<tbody>
<tr>
<td>> Truck pilot</td>
<td></td>
</tr>
</tbody>
</table>

Source: SAE, Roland Berger
Autonomous trucks are enabled by an interplay of technology areas including hardware, software and integrated controls.

Key technology requirements automated trucks

Sensors
Input about the environment as well as communication with the cloud

V2X connectivity
Communication with other trucks (e.g. for platooning) and with infrastructure (e.g. buildings & roads)

Vehicle control
Vehicle actuation and output actions

Integrated controls
Supervisory controls over system, decision algorithms

Spatial imaging
Sensor data fusion for environmental model & object recognition

Mapping & path planning/control
Route and motion planning on map data and motion

Human-Machine-Interface (HMI)
New driver interaction patterns

Source: Roland Berger
A variety of sensors, connectivity and vehicle control systems are used in automated trucks along with HMI and software modules.

Technologies used in automated trucks

Sensors monitor the surroundings of the vehicle:
- Radar sensors monitor traffic in front (Stage 1) and to the sides of the truck (Stage 2).
- Front stereo camera adds redundancy and monitors traffic in front (Stage 3).
- Lidar creates high resolution 3D environmental data (Stage 3).
- Internal camera monitors driver to ensure that he can take back control if needed (Stage 3).

Vehicle connectivity (V2V/V2I) is not required for automated vehicles in Stage 1 and 2, but platooning depends on V2V communication between paired trucks.

Spatial imaging is done by aggregating the inputs from all sensors to develop 3D maps:
- Profile mapping of surroundings includes data about shapes, sizes, distances and speeds.
- Sophisticated algorithms required to process surrounding objects at a high rate.
- Software constantly learns for future adaptation.

Vehicle control allows steering of the vehicle:
- Automated steering for lateral control of the vehicle (Stage 2).
- Automated manual transmission (Stage 2) already on significant share of US trucks (~40%).
- Central ECU processes all sensor data (Stage 3).

V2X connectivity

Mapping and path planning/control uses advanced positioning systems and sensor data to plot, track and control appropriate routes to vehicle destination:
- System processes GPS data along with real time information received from imaging and mapping sensors like cameras and radar.
- Complex software required to determine positions of surrounding vehicles with precision and account for other variables like traffic, road conditions, accidents etc.

HMI communicates vehicle information to the driver:
- Informs the driver about the automated mechanical actions of the vehicle.
- Warns or instigates action from driver.
- Displays 3D map that the vehicle uses for its operations to help with driver's visualization.

Source: Expert interviews; Roland Berger
Incremental costs of automated driving increase from Stage 1 to 5 – Total incremental cost of stage 5 truck over 20 k USD

Incremental technologies and vehicle cost per stage [USD per truck]

<table>
<thead>
<tr>
<th>Incremental software</th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
<th>Stage 4</th>
<th>Stage 5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>~85%</td>
<td>1,800</td>
<td>5,100</td>
<td>6,200</td>
<td>5,900</td>
<td>4,400</td>
<td>23,400</td>
</tr>
</tbody>
</table>

- Processing of sensor data from ACC and/or lane keep assist
- Processing of additional sensor input
- Higher level of environmental recognition required
- Complete automation of sensing process for specific environment
- Ability to correct for unknown variables in every situation is required

<table>
<thead>
<tr>
<th>Incremental hardware</th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
<th>Stage 4</th>
<th>Stage 5</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>~15%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- Long-range radar
- Short-range radar (lateral sensing)
- Wiring
- Short-range radar (longitudinal sensing)
- Automated steering
- Front camera
- HMI
- Interior camera
- Central ECU
- Lidar
- Connectivity systems

Source: Expert interviews; Roland Berger
Driver and fuel are the largest cost items and will be impacted by automated driving – Additional savings on insurance cost possible

Impact of automated driving on operating costs [USD/mile]

- Driver rests while truck drives automated (Stage 4) and logs more miles
- MPG gains from predictive powertrain control and platooning
- Less accidents drive down insurance premiums
- Only minor savings depending on fleet
- Focus of analysis

Source: Roland Berger
We calculated operating cost benefits and investment paybacks for three representative use cases.

Use cases – Example USA

- **a Long-haul**
 - Long distance traffic between warehouse and harbor
 - Trip length 2,000 miles
 - Majority of trip on high traffic highways
 - Likelihood to form a platoon 40%-50%
 - Driver not required any more in Stage 5 (fully automated warehouse with automatic loading/unloading)

- **b Regional – high traffic roads**
 - Short distance traffic between harbor and distribution center
 - Trip length 400 miles
 - Majority of trip on high traffic highways
 - Likelihood to form a platoon 40%-50%
 - Driver not required any more in Stage 5 (fully automated warehouse with automatic loading/unloading)

- **c Regional – low traffic roads**
 - Short distance traffic between regional hub and local warehouse
 - Trip length 400 miles
 - Low share of trip on high traffic highways – Majority on less frequented rural roads
 - Likelihood to form a platoon 10%
 - Driver still required in Stage 5, e.g. for loading and unloading

Source: Roland Berger
Long-haul case allows payback in 3 years for all stages but stage 3 – Payback times too long for regional transportation

Payback calculation for use cases

<table>
<thead>
<tr>
<th>Use Case</th>
<th>Total Savings per Year [000 USD]</th>
<th>Payback Period for Incremental Vehicle Cost [months]</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) Long-haul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 1: 1.7</td>
<td>Stage 2: 2.3</td>
<td>Stage 3: 2.4</td>
</tr>
<tr>
<td>Stage 4: 8.0</td>
<td>Stage 5: 72.7</td>
<td></td>
</tr>
<tr>
<td>b) Regional – high traffic roads</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 1: 1.0</td>
<td>Stage 2: 1.3</td>
<td>Stage 3: 1.4</td>
</tr>
<tr>
<td>Stage 4: 4.7</td>
<td>Stage 5: 42.4</td>
<td></td>
</tr>
<tr>
<td>c) Regional – low traffic roads</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stage 1: 0.1</td>
<td>Stage 2: 0.2</td>
<td>Stage 3: 0.2</td>
</tr>
<tr>
<td>Stage 4: 0.9</td>
<td>Stage 5: 0.9</td>
<td></td>
</tr>
</tbody>
</table>

Benefits from DATP\(^2\) quickly offset initial investments in Stages 1 and 2 and driver cost savings allow quick payback in Stages 4 and 5.

Benefits from DATP\(^2\) offset initial investments in Stage 1 and driver cost savings allow payback in Stage 5 – Slow payback in Stages 2-4.

Limited benefits lead to long payback times.

Source: Roland Berger

1) Incremental vehicle cost: Stage 1: 1,800 USD, Stage 2: 6,900 USD, Stage 3: 13,100 USD, Stage 4: 19,000 USD, Stage 5: 23,400 USD 2) Driver-assisted truck platoon
Up to Stage 3, level of platooning will influence adoption of automated trucks, driver cost savings drive adoption in Stage 4

Impact of platooning on payback times [mo]

<table>
<thead>
<tr>
<th></th>
<th>Long-haul</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-term</td>
<td>Long-term</td>
</tr>
<tr>
<td>Stage 1</td>
<td>13</td>
</tr>
<tr>
<td>Stage 2</td>
<td>18</td>
</tr>
<tr>
<td>Stage 3</td>
<td>34</td>
</tr>
<tr>
<td>Stage 4</td>
<td>22</td>
</tr>
<tr>
<td>Stage 5</td>
<td>4</td>
</tr>
</tbody>
</table>

Key insights

> Adoption of automated trucks goes through two distinct phases
 - In the mid-term (Stage 1-3), payback periods increase significantly by stage as cost savings remain flat while per vehicle investments grow
 - Level of platooning has significant impact on payback periods up to Stage 3 – Payback within 3 years can only be reached by operating in platoon mode for over 90% of miles travelled
 - In the long-term, payback periods drop with Stage 4 due to additional driver cost savings – fast progression from stage 3 to 4 expected
 - Long-term adoption less impacted by level of platooning

Likelihood of platoon formation: 45% (base assumption for use case a) 90%
To realize the potential of automated driving several ecosystem challenges need to be solved

Main requirements for self-driving trucks

1. Technological requirements
 - Hardware is largely available with incremental innovation needed
 - Software & integration need advanced development
 - Geo-mapping needed for highly detailed elevation maps for PPC

2. Supply chain development
 - Players are forming partnerships and investing in autonomous trucks technology
 - System integrator required, but still missing/too early to define

3. Legal requirements
 - Legal driving framework needs to be updated
 - Testing of automated trucks must be enabled
 - Liability issues must be clarified

4. Ethical considerations
 - "Dilemma" of fair decision vs. rationale decision
 - Broad dialogue among all stakeholders required
 - Needs to serve as key influence in legal requirements

5. Enabling ecosystem
 - Availability of required infrastructure (e.g., LTE network)
 - Truck driver acceptance of systems and qualification
 - Cyber security standards to enable safe truck operation

Source: Roland Berger
Four key implications for the trucking industry have been derived

Key implications for stakeholders of trucking industry

<table>
<thead>
<tr>
<th>Key insight from analysis</th>
<th>Implication for stakeholders</th>
</tr>
</thead>
</table>
| Safety as real driver behind adoption of automated trucks | > Limited pull from fleet operators due to limited commercial benefits
> Limited push from OEMs as long as legal issues are not resolved
> Tighter safety requirements pushes ADAS into the market and drives adoption of automated trucks |
| Roles and responsibilities within the value chain change | > Definition of system architectures and responsibility for system integration remains the domain of OEMs across all stages
> While OEMs continue to source complete functions from suppliers in Stage 2, a single entity will be required in Stage 3 to handle the higher complexity and interaction between systems (OEM or an ESP)
> With Stages 4 and 5 being only software driven, and the need to realize scale effects, it is possible that a large software player gains a large share of the revenue and profit pool |
| New business models emerge | > New business models such as Platoon Service Providers or warehouses with automated loading and unloading functions will emerge |
| Operator models change | > Large fleet operators will gain a competitive advantage over owner drivers as they can more easily form intra fleet platoons and are more likely to platoon with peers than with owner drivers |

Source: Roland Berger
While pull from fleet operators and push from OEMs will remain limited, safety regulation will drive adoption of automated trucks.

Drivers of automated truck adoption:

- **Fleet operators**: Limited pull from fleet operators due to limited commercial benefits.
- **Regulation**: Tighter safety requirements pushes ADAS into the market and drives adoption of automated trucks.
- **OEM**: Limited push from OEMs as long as legal and cyber security issues are not resolved.

Source: Roland Berger
Roles and responsibilities within the value chain will change with different stages of automation

Role sharing between OEMs and suppliers

<table>
<thead>
<tr>
<th>Level of integration</th>
<th>Technology-leader OEMs</th>
<th>Technology-follower OEMs</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No/function-specific automation</td>
<td>Combined function automation</td>
</tr>
<tr>
<td></td>
<td>No/function-specific automation</td>
<td>Combined function automation</td>
</tr>
<tr>
<td>Vehicle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Content</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Role of OEMs
- Complete system understanding
- Integrate fail-operational vehicle safety concept
- Drive ADAS acceptance (regulation/customer acceptance)

Role of suppliers
- Holistic ADAS understanding from components (sensors and algorithms) to complete systems
- Infrastructure co-development (V2V, V2I)
- Development lead for affordable and secure ADAS solution
- Complete system competency including sensors and software capabilities

Source: Roland Berger
Platoon Service Providers are expected to emerge that orchestrate platoon formation across fleets

Business model change: Platoon formation options

Matching

Scheduled platoons (inter fleet)
- Warehouse/ Fleet operator
 > Fleet operator selects trucks to form a platoon based on trip schedules

On-the-fly platooning (intra fleet)
- Trucks form ad-hoc platoons on highly frequented corridors – no matching of trip plans

Orchestrated platooning (intra fleet)
- Platoon Service provider (PSP) matches trip schedules

Pairing

Fleet operator
- Trains form platoon for the common part of their trip, monitored by fleet operator

Disengagement

Fleet operator
- Trucks drive independently to final destination

Orchestrated platooning (intra fleet)
- Trucks disengage and keep contact with PSP

Source: Roland Berger; TNO
Large fleet operators will gain a competitive advantage as they are more likely to find platooning partners

Options for platooning collaboration

<table>
<thead>
<tr>
<th>Willingness to platoon with ...</th>
<th>Owner operators</th>
<th>Large fleets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Owner operator</td>
<td>33%</td>
<td>5%</td>
</tr>
<tr>
<td>Any large fleet</td>
<td>13%</td>
<td>20%</td>
</tr>
<tr>
<td>Known fleet</td>
<td>20%</td>
<td>10%</td>
</tr>
<tr>
<td>Own fleet</td>
<td>33%</td>
<td>47%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Willingness to wait for platooning partner</th>
<th>Owner operators</th>
<th>Large fleets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>5%</td>
<td>46%</td>
</tr>
<tr>
<td>No</td>
<td>95%</td>
<td>54%</td>
</tr>
</tbody>
</table>

Key insights

> Platooning outside own fleet bears the risk to improve a competitor's bottom-line

> Large fleets have a competitive advantage as they can platoon within own fleet and also have stronger time latitude and can afford waiting for platooning partner

> Less willingness to platoon with larger fleets

> Unlikely to wait for platooning partner

Source: Auburn University; Roland Berger
Your contacts at Roland Berger

Stephan Keese
Senior Partner Automotive, North America
Stephan.Keese@rolandberger.com
+1 312 385-0426

Dr. Wolfgang Bernhart
Senior Partner Automotive, Germany
wolfgang.bernhart@rolandberger.com
+49 160 744-7421

Norbert Dressler
Senior Partner Automotive, Germany
norbert.dressler@rolandberger.com
+49 160 744-7420

Markus Baum
Principal Automotive, Germany
markus.baum@rolandberger.com
+49 160 744-7121

Dr. Walter Rentzsch
Project Manager Automotive, North America
walter.rentzsch@rolandberger.com
+1 248 275-3851