Global electric aircraft developments continue rapid upward trend

Global electric aircraft developments continue rapid upward trend

Portrait of Robert Thomson
パートナー, Managing Partner United Kingdom
ロンドンオフィス, Western Europe
+44 20 3075-1100

The number of electrically propelled aircraft around the world is pushing 170

Contact us about electric propulsion

Our developments database grew by ~50% since April, 2018, and estimates suggest there could be more than 200 by the end of 2019

An industry-wide shift towards developing electrically-propelled aircraft is ongoing, and recent developments have only increased the momentum. Over the past 10 years, we at Roland Berger have been watching developments in the field closely. Our latest Think:Act publication on the subject - Aircraft Electrical Propulsion – Onwards and Upwards - covered recent developments and evaluated how the aviation and aerospace industries stand to change. Roland Berger is continuing to chart the trajectory of progress in aircraft electrical propulsion - below is our interactive map for you to discover which countries are in the forefront of research and development, who the key players are, and what the major ongoing projects are.

Explore advances in electric propulsion by clicking the black dots and blue pins on the interactive map

The map can also be viewed here (mobile version)

Urban air taxis still dominate the scene, representing about 50% of all developments mapped

The pace of announcement of new Urban Air Taxi concepts has beaten other categories of aircraft, rising from ~45% to 50% of the developments in the Roland Berger database. As can be expected, this came with entries from important aerospace players, such as Boeing, which in January 2019 announced the successful first test flight completion of its autonomous passenger air vehicle (PAV) prototype. Developed by the Boeing NeXt division - which leads the company's efforts in urban air mobility - along with Boeing subsidiary Aurora Flight Sciences, the PAV can carry 2 passengers and has a range of up to 50 miles. The PAV demonstrated a controlled take-off, hover, and landing, though future testing is needed to validate forward, wing-borne flight and the transition phase between vertical and forward-flight modes – Boeing described this transition phase as most significant engineering challenge for a high-speed VTOL aircraft.

Concurrently, there are now 100 projects being conducted around the world by cities, universities and potential operators to test and develop the UAM ecosystem. Find out more in our interactive map.

General aviation is close behind, comprising ~70 projects globally

Within this category, the GoFly Challenge has continued to drive developments in personal flying, with a $2 million prize offered to the best near-VTOL device. Phase II winners include the Silvering S1 hoverbike, a Delft University student project backed by 21 corporate partners. The Silverwing is powered by two electric motors with ducted rotors and makes a 90-degree transition from vertical take-off to horizontal cruise flight.

That urban air taxis and general aviation projects dominate in fully-electric propulsion remains unsurprising. Not only are smaller developments easier to fund and test, but current electrical systems technology still favours lower power and shorter distance flights. A battery gravimetric density of ~500 Wh/Kg would be required as a minimum for viable aircraft that could one day be competitive with today's propulsion systems for regional and large commercial flight; this is not expected before 2030. Today's regional and large commercial electrical aircraft concepts therefore tend to employ turbo-electric hybrid systems at present.

The wider landscape of electrical propulsion is emerging, with airline operators and other stakeholders joining the fray

Aircraft manufacturers and their associated technologies are just one piece of the puzzle – for electrically-propelled aircraft to feature in everyday life, all stakeholders have a role to play in the transition.

Airports and airlines are two notable commercial stakeholders. Earlier this year, we spoke to Denise Pronk, Head of Sustainability at Royal Schiphol Group, who described how Schiphol airport is leading the change to sustainable and electrical flight. Schiphol in fact incentivizes the use of quiet and clean aircraft by differentiating airport charges, and it was flagged that infrastructure adjustments or additional energy generational might well be required to accommodate electric aircraft at airports.

Airlines are a second key commercial stakeholder, who may stand to gain by playing an active role in electrical propulsion. This is shown by the partnership between Harbour Air, a Vancouver-based airline which operates a fleet of 40 passenger-carrying seaplanes, and MagniX, an electrical propulsion start-up. The aim is to further reduce Harbour's aircraft emissions by electrifying every aircraft in the fleet, but MagniX is also promising Harbour significant operating cost savings via reduced need for maintenance and a cheaper 'fuel' price. MagniX expects to achieve certification on its engines within the next two years.

Giving the people a say

Last but not least, the general public also have a role to play, especially when it comes to urban air taxis. Airbus UTM, a division of Airbus's Urban Air Mobility Unit, recently published results from a preliminary study on UAM public acceptance. Of 1,540 people surveyed, 44% indicated they support, or strongly support, UAM deployment – interestingly, those in the 23-34 age group were more likely to have a positive initial reaction to UAM compared to 75-84 years-olds. In addition, 67% of respondents from Mexico City said they were likely or very likely to use UAM, compared to only 27% in New Zealand. Top concerns include safety of individuals in the ground and noise pollution.

The study shows that there is indeed existing support for UAM, though geographical or practical necessity and mindset may be key factors in speed and extent of adoption. Public involvement and education may therefore be necessary to achieve widespread acceptance, as encouraged by the Bavarian city of Ingolstadt - citizens have been promised an active role in feasibility studies as part of the city's ongoing UAM Initiative,

A race to the skies or race in the skies?

Throughout this discussion, we can see that electrically propelled aircraft and their associated ecosystem are certainly advancing, but by no means perfected; the regulatory landscape in particular is arguably still in its infancy. But out of all the obscurity, a very clear vision has arisen for electric aircraft – racing. In February 2019, Airbus announced a partnership with Air Race E, a global electric plane race set to launch in 2020. The race is mirrored by the intentions of Airspeeder, an Australian company working towards a novel sports league for electric VTOL vehicles. It is hoped that the competition will drive development and adoption of more technologically advanced engines that can be applied to UATs and commercial aircraft. After all, if the promise of greener, cheaper, and safer flight wasn't enough to spur on development, turning electric propulsion into a competitive sport may well do the trick.

Contact our experts

How will the industry evolve due to electric propulsion? How will electric propulsion impact your company? We invite you to contact us at, or connect with Robert Thomson or Nikhil Sachdeva via LinkedIn to discuss your thoughts.

Subscribe now!

Interested in finding out more about exciting developments in the field of electric propulsion? Register here to receive the latest updates delivered straight to your inbox.

Further Reading

This page was created in May, 2018, and was previously called "Electric propulsion is finally on the map". It was updated in October, 2018, and May, 2019, to include the newest developments in the field of electrical aircraft propulsion.